Principles of Optimal
Probabilistic Decision Tree Construction

Maris Ozols, Laura Manéinska, Ilze Dzelme-Bérzina', Rubens AgadZanjans', and Ansis Rosmanis
Institute of Mathematics and Computer Science,
University of Latvia, Raiga bulv. 29, Riga, LV-1459, Latvia.
marozols @yahoo.com, violeta@navigator.lv, ilze.dzelme @sets.lv,
ruben.agadzanyan @gmail.com, ansis.rosmanis@gmail.com

Abstract— Probabilistic (or randomized) decision trees can be
used to compute Boolean functions. We consider two types of
probabilistic decision trees - one has a certain probability to
give correct answer (but can also give nothing at all) and is not
allowed to give wrong answers, but other always manages to give
correct answer, but may require more computation. We provide a
method, which can be used to construct the optimal probabilistic
decision tree for a given Boolean function. The proposed method
is based on optimization. To reduce the number of parameters
in optimization problem, we take into account the symmetries
of given function. As an example we consider a very symmetric
Boolean function (‘Fano plane function’) with 7 arguments and
construct the optimal decision tree for it using our method.
The first kind of tree will guess the value of this function with
probability 17/28 in the worst case, but the second will ask in
average about 5 questions even if always the worst-case input is
supplied.

Index Terms— Probabilistic decision tree, computation of
Boolean functions, symmetry, optimization, query algorithm.

I. INTRODUCTION

The most simple model how to compute Boolean functions
(f : {0,1}" — {0,1}) is decision tree model [2]. In this
model the Boolean function is known, but arguments are kept
in “black box”. The aim is to compute the value of function
by querying as few arguments as possible.

A deterministic decision tree is a rooted ordered binary tree
T'. Each internal node of T is labeled with a variable x; and
each leaf is labeled with a value O or 1. For given input x €
{0,1}" the evaluation starts at the root. If the current node is
a leaf then the evaluation stops. Otherwise the variable x; that
labels the current node is queried. If z; = 0, then left subtree
will be recursively evaluated, if z; = 1 then the right one.
The output of the tree is the value (0 or 1) of the leaf that is
eventually reached. A deterministic decision tree computes f if
its output equals f(z), for every = € {0,1}". The complexity
of the decision tree is its depth, i.e., the number of queries
made on the worst-case input.

Definition 1: Boolean function f has degenerated argument
x;, if whatever values other arguments take, the value of f
does not depend on z;. Such functions we call degenerated.

Fact 1: Complexity of deterministic decision tree which
computes function f coincides with the number of non-
degenerated arguments of function f.

1 This research was supported by European Social Fund.

It is also possible to use probabilistic (randomized) decision
trees for Boolean function computing. Probabilistic decision
tree is a tree with two types of internal nodes: query nodes and
coin-flipping nodes. A coin-flipping node may have arbitrary
finite number of subtrees and each subtree has a certain
probability associated with it. When probabilistic decision tree
is evaluated, at coin-flipping nodes it randomly chooses one of
subtrees with appropriate probability. When a leaf is reached,
the tree must output the answer. But we do not allow to
give wrong answers. Thus there are two types of probabilistic
decision trees possible.

Type 1: Which never asks more than some fixed number of
questions. In case of bad luck it is allowed to say: “Sorry, I
don’t know”.

Type 2: Which must always output the value of function,

but in case of bad luck it may even require to ask all arguments
of function.
The complexity of Type 2 trees is the average number of
queries required to compute the worst-case input. It is known
that there are functions for which Type 2 trees require less
queries than deterministic trees [4], [3]. But we do not
investigate the upper or lower bounds - we provide a method
how to construct optimal tree for given function.

In this paper we will mainly discuss Type [trees, but our
method can be applied to Type 2 trees as well. For Type 1 trees
with fixed number of queries one needs to know how often it
will say “Sorry...” — let “?” denote this output.

Definition 2: T'(x) denotes the outcome of probabilistic
decision tree 7' given input z. Depending on z, it is either
probability distribution over {0, ?} or {1, 7}.

Definition 3: The probability of correct answer of decision
tree 7" for given function f and input z is denoted by T (x) =
P(T(z) = f(x)) =1— P(T(z) =7).

Definition 4: We say that probabilistic decision tree T
computes function f if Ty(x) > 1/2 for all inputs z € {0,1}".

II. PRIMITIVE REDUCTION

One decision tree with slight modifications can be used to
compute a vast range of Boolean functions. For example, if
we know the best tree for some function f, we can build one
also for —f, where “—” denotes negation. Even more - if we
know optimal tree for f(x1,x2,x3), we can easily modify it

and compute let’s say f(xs3,22,21) or f(—x1,xe, x3).

Definition 5: There are three trivial reductions:
1) bit swapping:

SWAP;;(z1,22,...,&iy ..., Tj, ..., Ln) =
(X1, T2, Xy Ty, Ty) ()
2) bit inversion:
NOT; (21,22, Tiye vy Tpy) =
(1,2, oy Ty v, Tyy))
3) result inversion:
NOTf(z) = —f(x) 3)

Definition 6: Primitive reduction is any sequence of trivial
reductions - bit swapping (1) and bit inversion (2), which can
be followed by result inversion (3).

Example 1: Function f(x1,22) = x1&x2 can be primi-
tively reduced to g(x1,x2) = 2 V 21, because

f=NOTogoSWAP;5 0 NOT; 0o NOT;

Definition 7: Distance of Boolean function f is

Dy =|l{e | f@) =0} ~ [z | @) =1}]| @

It is easy to see that primitive reduction preserves distance

(because each trivial reduction does). If we consider two-

argument Boolean functions, we see that the only possible

distances are 0, 2, and 4. It means that among 16 different two-

argument Boolean functions there are at least three different
up to primitive reduction. In fact there are four:

f(w1,22) =0 Dy =4 (degenerated)
f(w1,22) = 21 Dy =0 (degenerated)
f($1,$2)2$1V$2 D=2
fxr,m2) =21 Dw2 Dy=0

(here “@®” denotes logical XOR) and only two of them are non-
degenerated. If we neglect them, we could say that there are
only two essentially different two-argument Boolean functions.

Now we will show, how primitive reduction can be used to
transform decision trees. It allows to obtain optimal decision
tree for one function, if optimal tree for some other function
is known.

Theorem 1: Let f and g be Boolean functions and 7 be
primitive reduction such that f = m(g). If T, is optimal
decision tree for g then Ty = m(T},) is optimal for f.

Proof: To understand how 7(T},) is constructed, it suffices
to consider only trivial reductions:

1) if w(g) = g o SWAP,; then w(T,) is obtained by
relabeling the query nodes of T, namely x; should be
replaced by x; and vice versa,

2) if 7(g) = goNOT, then w(T}) is obtained by exchang-
ing subtrees of T}, corresponding to outcomes 0 and 1
for all nodes where z; is queried,

3) if 7(g) = NOTog then 7(T) is obtained by exchanging
0 and 1 in decision tree output (in T} leaves).

In all three cases Ty = w(T}) will be optimal for f. Otherwise
there would be some 7' which is better than T’ for f. But then
a~t (T) would be better than T, for g which is a contradiction
(note that 7~ = 7 if 7 is trivial). [}

III. SYMMETRIES OF HYPERGRAPHS

For the sake of simplicity from now on we will consider
only monotone Boolean functions. This restriction is arbitrary
and our method can be generalized for non-monotone Boolean
functions as well, but then we would have to introduce more
complicated notions of symmetry. The brightest side of this
restriction is that actually we will be dealing with a larger
class, i.e. the class of those Boolean functions which are
primitively reducible to monotone ones.

Definition 8: Boolean function f is monotone IFF

Vo,y € {0,1}": (= y) = (fx) = fly))

where z = y stands for bitwise implication.

Each monotone Boolean function can be written in disjunc-
tive normal form (DNF), i.e. as a disjunction of terms where
each term is a conjunction of variables. Note that DNF of
monotone Boolean function does not contain negations.

Example 2: A monotone Boolean function in DNF:

flx1, xe, 23, 24, 75) =(21&22&23&24)
V(zo&axs)
\/(:c3&x5)

DNF of monotone Boolean function can be considered as
a finite incidence structure where terms stand for lines and
variables stand for points.

Definition 9: Finite incidence structure is a formal triple
(V,B,I), where V is a finite set of points, B is a finite set
of lines and 7 is incidence relation between them: (v,b) € T
means point v is on line b.

Each incidence structure can be thought as a hypergraph, i.e.
a graph with generalized edges (called hyperedges) connecting
more than two vertices. For given incidence structure (V, B,7)
one can construct a hypergraph G = (V, B) by setting V =V
and B = {{v | (v,b) € T} | b € B} - each hyperedge
corresponds to a set of vertices.

Note that in DNF one term cannot be a subterm of other,
because in that case the largest term can be eliminated using
absorption rule. It means that in corresponding hypergraph one
hyperedge cannot be a subset of other.

Definition 10: Hypergraph corresponding
Boolean function f is denoted by G/y.

Example 3: See Fig. 1 for hypergraph example.

to DNF of

X1 X2 X3 X4

(¢ QN /) D)

X5
Fig. 1. A hypergraph for function (6) from previous example

It is not hard to notice that hypergraph in Fig. 1 possesses
some symmetry. Let us introduce appropriate definitions.

Definition 11: Two hypergraphs G; = (V1, By) and G4 =
(Va, By) are said to be isomorphic (G1 = G3) IFF there exists
a bijection ¢ : V; — V5 such that a pair of vertices u,v € V}
is adjacent in G IFF ¢(u) and ¢(v) are adjacent in Gs.

Definition 12: A bijection ¢ : V — V' is an automorphism
of G = (V, B) IFF it is an isomorphism between G and itself.

Example 4: Hypergraph in Fig.1 possesses 4 automor-
phisms: trivial, (1 < x4), (2 < x3), (x1 & x4, T2 < X3).

Fact 2: Automorphisms of Gy form its automorphism
group Aut(Gy).

Each automorphism ¢ € Aut(Gy) can be thought as a
permutation of vertices of Gy that preserves hyperedges. It
means that DNF of corresponding Boolean function is also
preserved and thereby the function itself.

Corollary 1: Each automorphism ¢ € Aut(Gy) preserves
the corresponding Boolean function f:

Vo € {0,117 : f(px) = f(Tpa), Tp(2), - - -

(here ¢x is a permutation of arguments).
This allows us to introduce the notion of symmetric vertices.
Definition 13: Vertices u and v of hypergraph Gy are

7:17ga(n)) = f(x)

symmetric (u L v) IFF there exists an automorphism ¢ &
Aut(Gy) for which p(u) = v.

Fact 3: Relation “L” divides the set of vertices of hy-
pergraph G5 into equivalence classes. This applies also to
arguments of corresponding function f.

Example 5: There are 3 equivalence classes of vertices of
hypergraph in Fig.1: {x1,24}, {22,235}, {25}. The same
stands for arguments of function (6).

If we consider an arbitrary input (sequence of variables) for
given function f, we can investigate to which other inputs it
can be mapped via an automorphism ¢ € Aut(G). Hence
we can introduce the notion of symmetric inputs for given
Boolean function f.

Definition 14: Inputs z,y € {0,1}" of Boolean function

f are said to be symmetric (z é y) IFF there exists an
automorphism ¢ € Aut(Gy) such that gz = y.

Example 6: A class of symmetric inputs for function (6) is
for example:

{(07 07 1’]‘7 1)7 (0’]"0? 17]‘)’ (]‘707 1703]‘)7 (17 170’ O? 1)}

Fact 4: Relation “é” divides all inputs of f into equiva-
lence classes.

Definition 15: [x]y = {b|b L x} is equivalence class of
input z of function f.

If we take an arbitrary input x and repeatedly apply au-
tomorphisms from Aut(Gy) to it, we will span the entire
class [z];. Now we have introduced all the required notions
to proceed to decision tree construction.

IV. PRINCIPLES OF PROBABILISTIC
DECISION TREE CONSTRUCTION

Principle 1: If x é y are inputs of Boolean function f,
then probabilistic decision tree Ty should give correct answer
with equal probabilities for both inputs.

Theorem 2: 1f probabilistic decision tree Ty does not satisfy
Principle 1, it can be modified to satisfy it without decreasing
the worst-case probability for any of the equivalence classes.

Proof: We will give an explicit description how to construct
improved decision tree 7. Let Aut(Gy) = {¢1,¢2,.... N}
and N = |Aut(Gy)| be the size of Aut(Gy). Let the root of

Ty

Fig. 2. Improved decision tree 1" Ji

new decision tree T} be a coin-flipping node with N uniformly
distributed outcomes and let us assign to ¢-th outcome a copy
of initial tree T with inputs permuted by automorphism ¢;
(this subtree will be denoted by T o ¢;). Resulting tree is
shown in Fig.2. Because all symmetric inputs are treated
equally, it is clear that T]’c satisfies

o,y e {0,1)7: (oA y) = (Tha) = THy)) (6

and therefore Principle 1. Now we only have to prove, that
we have not decreased the worst-case probability for any
of the equivalence classes. Let [e]; be an equivalence class,
where all members have the same probability for 7'y, namely
T¢([e]f). Due to symmetry it is clear that they will have the
same probability also for 7%, i.e. T}([e]f) = T¢([e]s). But if
there is a class [u]; where all members does not have equal
probabilities for Ty and m is the worst-case input for this
class, then

N
Vi € fuly : Ty(e) =5 D Tr(pil@) ™

> D Tytm) = Ty(m

because average value of all probabilities will be greater than

the smallest one. |
Corollary 2: 1If T} satisfies Principle 1 and x is the worst-

case input, then all class [z]; consists of worst-case inputs.

Principle 2: If x; ~ x; are arguments of Boolean function
f, then probabilistic decision tree T in first query should ask
both arguments with equal probabilities.

From programmer’s point of view each decision tree T’y for
f can be considered as a function which does the following:
generates a random number R, then issues a query for an

argument x; where ¢ depends on R, and finally calls a sub-
routine which is another probabilistic decision tree calculating
(n-1)-argument function f'(z1,,...,Zi—1,Zif1,-..,Lpn) =
fz1, ..., @i—1,¢, @41, . .., T,) where g is the result of query.
We will call f’ a subfunction.

Definition 16: Boolean functions f and ¢ are said to be
isomorphic (f = g) IFF they have isomorphic hypergraphs:
Gy =Gy (see Def 11).

Definition 17: Decision trees Ty and Ty are said to be
isomorphic (I'y = T,) IFF there exists a permutation of
arguments ¢ such that p(T}) = Tj.

Note that the notion of isomorphic functions and isomorphic
trees can be extended using primitive reduction (i.e., functions
or trees are isomorphic IFF there exists a primitive reduction
from one to other).

Principle 3: Probabilistic decision tree for function f
should compute isomorphic subfunctions of f with isomorphic
subtrees.

We want to emphasize that here with isomorphic subfunc-
tions we also mean that the same number of questions has
been asked. It is possible that we arrive to the same function,
but we have asked different number of questions. Then almost
definitely will have to use different strategies for evaluating
these functions.

Although Principle 3 looks very reasonable, we were not
able to prove the following conjecture.

Conjecture 1: If probabilistic decision tree does not satisfy
Principle 3, it can be modified to satisfy it without decreasing
the worst-case probability.

Difficulties in proving Conjecture 1 arises due to the
fact that non-isomorphic subtrees for isomorphic subfunctions
could possibly lead to overall symmetry of entire decision tree.
It could happen that attempts to improve the non-symmetric
subtrees using symmetrization techniques similar to one used
in proof of Theorem 2 could disturb the overall symmetry and
therefore decrease the probability of correct answer for entire
tree. But this is not the case for the next theorem.

Theorem 3: If probabilistic decision tree 1’y satisfies Prin-
ciple 3 but not Principle 2, it can be improved without
decreasing the worst-case probability.

Proof: Let M be an arbitrary coin-flipping node of T
where Principle 2 is not satisfied. Let function computed by
subtree with root M be f’. Node M has sets of isomorphic
subtrees S; = {77, ..., T} } attached to it. It means root nodes
of subtrees {T7%,... ,T,ii} are query nodes asking symmetric
arguments for function f’. If M is the root node (and therefore
f' = f), we can safely average the probabilities of eval-
vating {T7,..., T} } for each subset S;, without decreasing
the worst-case probability for Ty. After performing this step
Principle 2 will be satisfied for M and Principle 1 will be
satisfied for the whole T'y. Now we can repeat this procedure
to all nodes M of the next level of Ty and so on. In this
manner we will make all nodes of T satisfy Principle 2 and
the whole tree will satisfy Principle 1. |

Corollary 3: 1f probabilistic decision tree satisfies Principle
3 and Principle 2, it also satisfies Principle 1.

V. DEMONSTRATION OF METHOD
A. Fano Plane Function
Lets now consider a particular function, which we will
use to demonstrate our method. We will call it Fano plane
Sfunction:
x1=T9=x4=1o0r

To =x3 =25 =1 or

T3 =x4 =26 =1 or

fr(x1, 20, 23,24, 05,06, 27) = 1if § 24 =5 =27 =10r
x5:9:6::171:10r
T =T7 =To =1 o0r

1’7:1‘121‘3:1
®)

x1:x2:x4:00r
m2:x3=x5:00r
m3:x4:x6:00r
fr(z1, 22, 23,24, 5, T6,27) =0 if ¢ x4 = x5 =27 =0 or
,CE51£C6:1‘1:OOI'

1‘62337:1‘2:001'

xr=x1=x3=0
©))

This function may look similar to definition of Hamming codes
but in fact they have almost nothing in common. We will show
that conditions in equations (8) and (9) does not contradict and
function fr is defined for all inputs. In order to do this, we
have to introduce the notion of projective plane.

Definition 18: A projective plane is a finite set of points
and a set of subsets of point set (called lines) which satisfies
the following conditions:

1) every two points lie on exactly one line;
2) every two lines intersect in exactly one point;
3) there are four points with no three collinear.

The projective plane of order n has n? +n + 1 points and
n?+4n-+1 lines. Each point lies on exactly n+1 lines and every
line contains exactly n + 1 points. Fano plane is projective
plane of order n = 2. It is possible to assign arguments of
function fr to points of Fano plane (as depicted in Fig.3) in
such manner, that each triplet of arguments from conditions
(8) and (9) lies on a line (circle xo, x5, x3 also will be called
“line”).

Lemma 1: Conditions (8) and (9) does not contradict and
function fr is defined for all inputs {0,1}".

Proof: We can reformulate conditions (8) and (9) for Fano
plane. Let white dot “o” denote 0 and black dot “e” denote 1
in Fano plane. We will call line in Fano plane white (black) if
all three points on it are white (black). Then (8) says: “fr =1
if there is a black line in Fano plane” and (9) says: “fr = 0 if
there is a white line in Fano plane”. It is clear that these two
cannot contradict, because each two lines in projective plane
have a common point and this point is either white or black.
Now we have to show that fr is defined for all inputs. In Fano
plane terms it means “if points of Fano plane are colored with

Fig. 3. Correspondence between points of Fano plane and arguments of
function fr from (8) and (9)

two colors (lets say black and white), there will always be at
least one line with all three points of same color”. If we note
the symmetry of colors from (8) and (9) then there are only
five non-isomorphic colorings of Fano plane (see Fig. 4). It is
easy to verify that in each case there is a line of same color
(e.g., the bottom line). [|

£ B, A
£ B2,

Fig. 4. Non-isomorphic colorings of Fano plane

We can use (8) to write down the DNF of function fp:

(:L'l&xg&l’4) \Y
V

fF(Il,iﬂz,IB,I4,9357I6,$7) =

(10)

It says: “fr(x) = 1 if all three points on first line are black or
all three points on second line are black... etc.” From (10)
one can see that Fano plane is indeed useful for visualizing
fr, because the incidence structure corresponding to DNF of
fr coincides with the projective plane of order 2.

It is easy to see that non-deterministic complexity of fr is 3,
because for all inputs one needs to know only three arguments
to show what value the function admits.

B. General Decision Tree for Fano Plane Function

Now we will use the results from Sect. IV to construct a
probabilistic decision tree for fr (according to Theorem 3, it
must satisfy Principles 2 and 3). According to Principle 3, we
have to consider all subfunctions of fr (cases when some of
arguments are known) and divide all unknown arguments into
equivalence classes (they are denoted with gray polygons in
Fig.5). According to Principle 2 decision tree has to ask with
equal probabilities for all arguments in the same equivalence
class. Thus we only have to assign some unknown probabilities
to equivalence classes (denoted with pi, po, ...in Fig.5). And
for each equivalence class we have to consider all possible
outcomes of queries asking arguments from this class. In this
manner we have to proceed till some depth of our decision
tree (i.e. number of arguments asked) — in our case it is five.
At the end when we have left only one question, there is no
sense to ask for such arguments which can give no information
about the value of fr (see three rightmost cases in last level
of Fig.5).

We want to emphasize that due to symmetry of function
fr colors used in Fig. 5 are relative (they can be exchanged),
because fr(—z) = —fr(x). You should pay attention only to
the fact - are the points of same color or not. And please note
that every Fano plane in Fig.5 corresponds to a whole class
of isomorphic subfunctions.

C. Calculating Probabilities

According to Corollary 3, our tree will satisfy Principle 1.
It means, in order to find the worst-case probability, we
have to consider only five non-isomorphic inputs depicted in
Fig.4. We used Mathematica 5.2 to calculate the probability
of correct answer for these inputs. We got five multilinear
polynomials of unknown probabilities:

A (11)
1

Py=1- ?pl(l - p3) (12)
5 1

P = - + ﬁ(2p2 —2p1(1 —p3) — pa(pr +2p2)) (13)
4 1

P, = 7 + ?(2])2 —pa(p1 + 2p2)) (14)
13 1

Py = oot 5g (4pa(l—pa) —pr(1—ps +2p)) (1)

Note that ps does not appear - it does not affect the result.

D. Optimizing Worst-case Probability

The worst-case probability for our decision tree is the
minimum probability of correct answer

Pw(p17p27p37p4):min{P17P27P37P47P5} (16)

We have to maximize the worst-case probability to get the best
possible tree:

17
P= maxlpw(p1,pz,p3,p4) = a7

0<p:i< 28

P1 P2
1-p1 4 1-p2 4
R e o :
A2 '
°
-
1-ps3 &
o % .3
/// \\O O \\\
Ve ‘ - i
1 & 1
‘ 3 ‘ 3 0
1o re
Fig. 5. General probabilistic decision tree for fr which satisfies Principles 2 and 3

which holds for all p1, ps, p3, p4 satisfying:
4po + p1ps = 4 + p1 + 2p1ps + 4papa (18)

But we must also take into account that py + ps < 1. Then
(18) reduces to:

p2=1 (19)
Py =0 (20)
0<ps<1 (21
p1ps = p1 (22)

where (22) means p; = 0 and 0 < p3 < 1 or p3 = 1 and
0 < p; < 1. We can see that worst input class is case 5 from
Fig.4. Members of this class will have probability 17/28 for

all probabilities satisfying our solution. In general there are
several decision trees with the same worst-case probability,
but they may have different probabilities of correct answer for
classes 2, 3, and 4.

We constructed the tree depicted in Fig.5 for the case of
five questions, because for less than five questions it is not
possible to have the worst-case probability greater than 1/2
(using the same method we showed that for four questions it
cannot exceed 5/14).

To calculate the average number of questions for optimal
Type 2 tree for Fano plane function, we constructed the tree
depicted in Fig.5 till the last level (where all arguments are
known). Then we minimized the maximal number of questions
required to get the answer (cases shown in Fig. 4). We were not

able to find global minimum analytically, but with numerical
optimization we were able to obtain solution with average
number of questions equal to 5.107. This is considerably less
than 7 - the number of questions required for deterministic
tree in worst case.

VI. CONCLUSIONS AND FUTURE WORK

It is algorithmically possible to construct the best or “almost
best” (using numerical optimization) possible probabilistic
decision tree for given Boolean function. This can be used in
compilers to perform randomized optimizations of programs.
We can consider a program which needs to evaluate some
compound “IF” condition frequently. If it contains a lot of
time-costly subconditions, it is important to find the value of
“IF” by evaluating as few subconditions as possible. Applica-
tion of our method to Type 2 decision trees could decrease the
average number of subconditions evaluated.

Another direction where to extend our results is quantum
query algorithms [1], because Type I tree model is very close
to the quantum query model. It is well known that each Type I

decision tree can be effectively simulated by quantum query
algorithm [2]. Quantum computation heavily exploits unitary
matrices. It is well known that each unitary matrix can be
decomposed into simple 2 x 2 Hadamard matrices and CNOT
gates [5]. This allows to specify n X n unitary matrix in general
form. If we could transfer principles (notions of symmetric
arguments and symmetric subtrees) to unitary matrices, it
could be possible to apply similar optimization technique as
in probabilistic case.

REFERENCES

[1] Ambainis, A., Quantum lower bounds by quantum arguments.
quant-ph/0002066 (2000)

[2] Buhrman, H., de Wolf, R.: Complexity measures and decision tree
complexity: a survey. (2002)

[3] Saks, M., Wigderson, A.: Probabilistic Boolean decision trees and
the complexity of evaluating game trees. In Proceedings of 27th
FOCS (1986) 29-38

[4] Snir, M.: Lower bounds for probabilistic linear decision trees.
Theoretical Computer Science 38 (1985) 69-82

[S] Vartiainen, J.J., Mottonen, M., Salomaa, M.M.: Efficient decompo-
sition of quantum gates. Phys. Rev. Lett. (2004) vol. 92, 177902

